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A NOTE ON MATRICES WITH ZERO TRACE

FERrGUs GAINES, California Institute of Technology

1. Itis known that an # X# matrix 4 with elements in a field F can be writ-
ten as a commutator XY — Y X over F, if and only if the trace of 4 is zero. This
result was proved by Shoda [1] in the case that the field has characteristic zero
and was extended by Albert and Muckenhoupt [2] to fields of arbitrary char-
acteristic. In this note we consider Shoda’s result when F is the real or complex
numbers and we also derive some results when 4 is hermitian or skew-hermitian.

The author wishes to express his thanks to Dr. Olga Taussky for suggesting
to him the results contained in the corollaries to Theorem 1.

2. We shall make use of the following two results of W. V. Parker [3].

LEMMA 1. If A is an nXn matrix of complex numbers and trace A is gero,
then there exists a unitary matrix U so that UA U* has all its main diagonal ele-
ments equal to zero.

LEMMA 2. If A is a real nXn matrix with trace zero, then there exists a real
orthogonal matrix T so that TAT* has zero main diagonal.

Our main result is the following:

TuEOREM 1. If 4 is an nXn complex matrix and trace A is zero, then there
exist matrices X and YV so that A=XY —YX, where X is hermitian and Y has
trace zero.

Proof. By Lemma 1 we can find a unitary matrix U so that U4 U* =B = (b;;)
has zero diagonal. Let D =diag(di, ds, + - -, d,) where the d; are real and dis-
tinct, and let Y;=(y;;) where y;;=0,;/(d;—d;) when i5j and y;;=0, 7, j=1, 2,

-, n. Then B=DY1—Y,D and thus 4=XY—YX where X=U*DU,
Y=U*Y,U, and we see that X*=X and trace Y =0.

COROLLARY 1. If, in addition, A is hermitian, then it can be written as XV
— Y X, where X is hermitian and YV is skew-hermitian.

COROLLARY 2. If A is skew-hermitian with trace zero, it can be written as XYV
— Y X where both X and Y are hermitian.
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REMARK. If 4 is a real matrix with trace zero then Theorem 1 and its corol-
laries hold if we replace “hermitian” and “skew-hermitian” by “symmetric” and
“skew-symmetric,” respectively. Lemma 2 is used to prove these facts.

If, in Corollary 1, we replace X by B = (1/v/2)(X — Y) and Y by B*
=(1/4/2)(X+Y), we get the following theorem due to R. C. Thompson [4].

THEOREM 2. If 4 is a hermitian matrix and trace A =0, then A can be written
as BB*—B*B.

It is also true that Corollary 1 follows from Thompson’s result on replacing
B by (1/v/2)(X—Y) where X=(1/+/2)(B¥+B) and Y=(1/+/2)(B*—B).

This work was carried out (in part) under a grant from the National Science Foundation.
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SOLUTIONS OF x!+y*=zt IN 2X2 INTEGRAL MATRICES
R. Z, DoMiaTy, Technische Hochschule, Graz
A. Aigner [1] investigated solutions of x*+y*=3* in quadratic domains. In

this note, solutions are found in the ring T' of 2 X2 matrices with integer ele-
ments. Let 0 and I be the zero and identity matrices respectively.

THEOREM. There exist solutions of A*+B4=C*, where A, B and C are in T
and 4450, B*#0, C*#0.

Proof. Set

0 a 0 ¢ 0 ¢
4= [ ] B = [ ] ¢= [ ]
b 0 d 0 f 0
Then A4=(ab)?l, and there are similar expressions for B* and C% Thus,
A4+ Bt=C*if and only if (ab)2+(cd)?=(ef)2 But using the well-known solution

to the Diophantine equation x2+4y%?=22, we can set b=d=f=1, and a=2mn,
c=m?—n?, e=m?+n? obtaining

[0 2mn]4 N [O m: — n2:|4 _ [0 m? + n2]‘
1 0 1 0 1 0 '
Reference
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